This article was downloaded by: [Tomsk State University of Control Systems and

Radio]

On: 18 February 2013, At: 15:00

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

Weak Crystalization in Liquid Crystals: Experimental Evidence

V. P. Voronov ^a

^a Oil & Gas Research Inst., Academy Sciences USSR, 65 Leninski Prospect, 117917, Moscow, USSR

Version of record first published: 24 Sep 2006.

To cite this article: V. P. Voronov (1992): Weak Crystalization in Liquid Crystals: Experimental Evidence, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 212:1, 319-326

To link to this article: http://dx.doi.org/10.1080/10587259208037273

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst. 1992, Vol. 212, pp. 319-326 Reprints available directly from the publisher Photocopying permitted by license only © 1992 Gordon and Breach Science Publishers S.A. Printed in the United States of America

WEAK CRYSTALLIZATION IN LIQUID CRYSTALS: EXPERIMENTAL EVIDENCE

V.P. VORONOV. Oil & Gas Research Inst., Academy Sciences USSR, 65 Leninski Prospect, 117917 Moscow, USSR

(Received March 15, 1991)

Abstract. The heat capacity in the isotropic phase and the latent heat on the IN transition line have been measured in binary liquid crystal mixtures by high-resolution adiabatic calorimetry. It shown that an anomalous behaviour of the entropy jump on the IN the vicinity of phase transition line in the only is defined by an particular point behaviour of the crystallization fluctuations in the phase. The contribution of isotropic crystallization fluctuations to the heat capacity is the pretransitional comparable with heat capacity of the nematic fluctuations in the isotropic phase.

Keywords: phase transition, crystallization fluctuations, liquid crystal, isotropic phase, heat capacity, latent heat

crystallization phase transitions in ordinary liquids are strongly first order. A latent heat of such transitions is much larger than unity $(\Delta H_{cr}/RT_{cr} = \Delta S_{cr}/RT_{cr} \gg 1)$. Therefore fluctuations the parameter are order small, crystal rather their contribution to thermodynamic values is not observable experimentally.

In liquid crystals the situation is different. First, with interaction of the crystal lattice the orientational ordering leads to а lattice lower dimensionality which turns out to bе preferable. particular. the smectic phases A and C are systems with dimensional crystal lattices. Secondly. the orystallization transitions are weakly first order, latent heat being of the order of unity (AH_{cr}/RT_{cr}~1). that the crystallization Therefore one can expect

fluctuations could be observed experimentally. Moreover, a variety of transitions in liquid crystals allows us to study the crystallization with different effective dimensionality of the phase space for fluctuations.

The spectrum of a uniaxial mode in the vicinity of the characteristic wave vector q_o of a smectic lattice can be expressed in the form¹

$$\Delta(q) = \Delta + \xi_o^2 (q - q_o)^2$$

where $\Delta = \Delta_o + \tau$, $\tau = (T - T_{IN})/T_{IN}$, Δ_o characterizes the nematic phase width, ξ_o is the bare correlation radius. The phase space for the smectic fluctuations in the isotropic phase in reciprocal space is a spherical shell of radius q_o and width dq. This phase space is effectively one-dimensional. This is so because only the component of the wave vector normal to the surface of the sphere changes the energy. Other components are degenerate in energy. This leads to large fluctuations.

The entropy of smectic fluctuations in the isotropic phase in low-order perturbation theory can be expressed in the form

$$(S_{sm})_{I}/R = A\tilde{\Delta}^{-0.5}$$
,

where R is the universal gas constant, A=const, and $\tilde{\Delta}$ is renormalized inverse smectio susceptibility orientational ordering appears in the nematic phase, the for the smectic fluctuations is strongly phase space Therefore the entropy of the suppressed. fluctuations at the IN transition has a jump which can be expressed in the form

$$(\delta S_{sm})_{IN}/R = \tilde{\Delta}_{IN}^{-0.5} (1 - \xi_{o\parallel}^2/2\xi_{o\perp}^2 \tilde{\Delta}_{IN}) \approx \tilde{\Delta}_{IN}^{-0.5} \qquad (1).$$

Here $\tilde{\Delta}_{\text{IN}}$ is the inverse smectic susceptibility at the IN transition, $\xi_{\text{o}\parallel}$ and $\xi_{\text{o}\perp}$ are respectively the transverse and longitudinal bare correlation radii.

Thus the contribution of the smeetic fluctuations to the entropy jump displays an anomalous behaviour when a nematic phase width decreases.

The contribution of the smeetic fluctuations to the specific heat in the isotropic phase can be obtained from the smeetic fluctuation entropy

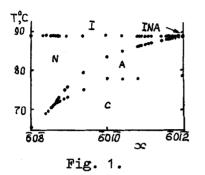
$$\delta C_{sm}/R = A/2\tilde{\Delta}^{-1.5}\partial \tilde{\Delta}/\partial \tau =$$

$$= A/2\tilde{\Delta}^{-1.5}(1 - A_{4}\tilde{\Delta}^{-1.5})^{-1}$$
(2).

Note that the behaviour of the specific heat of the smectic fluctuations is unusual, with the critical exponent in first approximation equal to $\alpha = 1.5$ (for the second order transitions $\alpha=0.5$)!.

The phase space for the smectic fluctuations in the nematic phase near the NC transition is two toroids of radius $q_{o\perp}$. This phase space is effectively two-dimensional. There are two components of the wave vector which change the energy. Again a two-dimensional phase space give rise to large fluctuations.

In this case the entropy of the smectic fluctuations has logarithmic dependence on the inverse susceptibility²


$$(S_{sm})_{N} \sim -\ln \tilde{\Delta}$$
.

The fluctuational part of the specific heat can be expressed in the form

$$\delta C_{sm}/R \sim \tilde{\Delta}^{-1} \partial \tilde{\Delta}/\partial \tau \tag{3}$$

with the critical exponent $\alpha = 1$!.

To observe the smectic fluctuations in the isotropic phase we have investigated the behaviour of a latent heat on the IN transition line and the isobaric specific heat

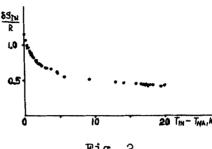
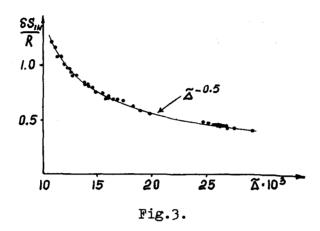


Fig. 2.

in the isotropic phase in binary liquid crystal mixtures. The measurements were performed by high -resolution adiabatic calorimetry.

The phase diagram of binary mixtures is shown in Fig. 1. On the phase diagram there is the INA triple point. It allows us to investigate the behaviour of the thermodynamic values as a function of the nematic phase width.


In Fig. 2 the behaviour of the entropy jump in units of R on the IN phase transition line is shown. The entropy jump increases anomalously as the nematic phase width jump decreases. The size οſ the is formed with contributions. one connected the nematic parameter jump at the IN transition, the other connected with the jump of the smeetic fluctuation entropy:

$$\delta S_{IN}/R = \alpha (\delta Q)_{IN}^2 + (\delta S_{Sm})_{IN}/R.$$

It had been shown experimentally that the nematic order parameter jump is practically independent of the nematic phase width. Thus the anomalous behaviour on the entropy

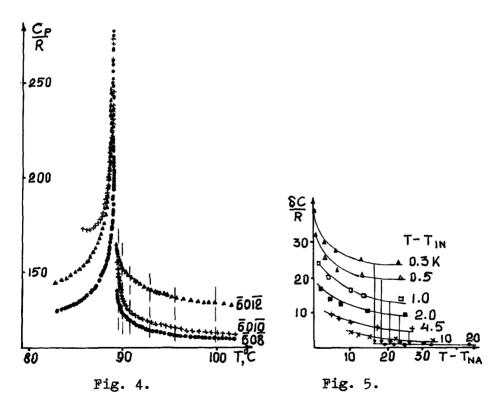
jump on the IN transition line is due only to the particular behaviour of the smectic fluctuations.

The entropy jump as a function of the renormalized inverse smectic susceptibility is shown in Fig.3. The solid curve is the approximation of the experimental data

by Eq.1. We have obtained very good agreement between experimental data and the theory. It is the direct experimental evidence of the smectic (crystallization) fluctuations in the isotropic phase.

In Fig. 4 the behaviour of the specific heat in units of R near the IN transition is shown for three mixtures. The nematic phase width for them changes from OK to 23K. The anomalous part of the specific heat in the isotropic phase is formed by the specific heat of the nematic order parameter fluctuations and that of smectic fluctuations:

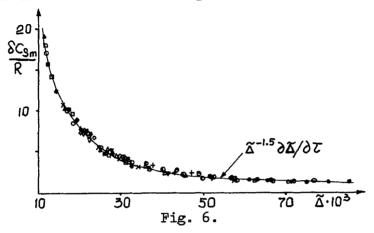
$$\delta C = \delta C_N + \delta C_{sm}$$
.

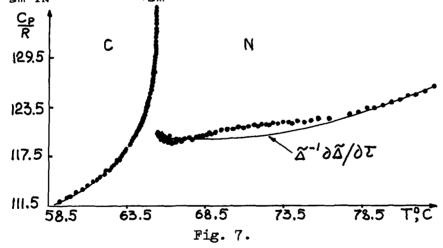

It is very difficult to separate these two contributions because the smectic fluctuation specific heat usually plays the role of the background for the pretransitional specific heat of the nematic fluctuations

324 V.P. VORONOV

in the isotropic phase.

We have proposed the special procedure of fitting. The cross-sections of the specific heat curves in the isotropic phase at constant distances from the IN line (dashed lines in Fig.4) have been performed. They (without the regular part of the specific heat) are shown in Fig.5.


The contribution of the nematic fluctuations to the anomaly of the specific heat depends only on a distance from the IN transition. Therefore the temperature dependence of each cross-section is defined only by the behaviour of the smectic fluctuation specific heat. If the contribution of the nematic fluctuation specific


heat is subtracted from the each cross-section (as shown by the arrows in Fig.5) we will obtain a universal

behaviour of the contribution of the smeetic fluctuations to the specific heat.

In Fig.6 the behaviour of the contribution of the smectic fluctuations to the specific heat is shown which

is obtained by such procedure. The solid curve is approximation by the Eq. 2. Very good agreement is observed. The approximations of the experimental data on $(\delta S_{sm})_{IN}/R$ and $(\delta C_{sm})/R$ were obtained with the same

adjustable parameters. Note that the vicinity of the INA triple point the contributions of the smeetic fluctuations

and nematic to the heat capacity in the isotropic phase are comparable.

The behaviour of the specific heat on the NC transition is shown in Fig.7. The solid line is the approximation by Eq.(3). Appearance on the specific heat curve for $T>T_{NC}$ of the "hump" which size increases when the distance from the NAC multicritical point decreases, must be yet explained.

REFERENCES

- 1. S.A.Brazovskii, Zh.Eksp.Teor.Fiz., 68, 175 (1975).
- 2. J.Swift, Phys. Rev. A, 14, 2274, (1976).
- S.B.Ranavare, V.G.K.M.Pisipati, and J.H.Freed, <u>Chem. Phys. Lett.</u> 140, 225 (1987).